Matricial Quantum Gromov-hausdorff Distance

نویسندگان

  • DAVID KERR
  • Marc Rieffel
چکیده

We develop a matricial version of Rieffel’s Gromov-Hausdorff distance for compact quantum metric spaces within the setting of operator systems and unital C∗-algebras. Our approach yields a metric space of “isometric” unital complete order isomorphism classes of metrized operator systems which in many cases exhibits the same convergence properties as those in the quantum metric setting, as for example in Rieffel’s approximation of the sphere by matrix algebras using Berezin quantization. Within the metric subspace of metrized unital C∗algebras we establish the convergence of sequences which are Cauchy with respect to a larger Leibniz distance, and we also prove an analogue of the precompactness theorems of Gromov and Rieffel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C∗-algebraic Quantum Gromov-hausdorff Distance

We introduce a new quantum Gromov-Hausdorff distance between C∗-algebraic compact quantum metric spaces. Because it is able to distinguish algebraic structures, this new distance fixes a weakness of Rieffel’s quantum distance. We show that this new quantum distance has properties analogous to the basic properties of the classical Gromov-Hausdorff distance, and we give criteria for when a parame...

متن کامل

Quantized Gromov-hausdorff Distance

A quantized metric space is a matrix order unit space equipped with an operator space version of Rieffel’s Lip-norm. We develop for quantized metric spaces an operator space version of quantum Gromov-Hausdorff distance. We show that two quantized metric spaces are completely isometric if and only if their quantized Gromov-Hausdorff distance is zero. We establish a completeness theorem. As appli...

متن کامل

Gromov–hausdorff Distance for Quantum Metric Spaces

By a quantum metric space we mean a C∗-algebra (or more generally an order-unit space) equipped with a generalization of the usual Lipschitz seminorm on functions which one associates to an ordinary metric. We develop for compact quantum metric spaces a version of Gromov–Hausdorff distance. We show that the basic theorems of the classical theory have natural quantum analogues. Our main example ...

متن کامل

2 3 N ov 2 00 4 ON GROMOV - HAUSDORFF CONVERGENCE FOR OPERATOR METRIC SPACES

We introduce an analogue for Lip-normed operator systems of the second author’s order-unit quantum Gromov-Hausdorff distance and prove that it is Lipschitz equivalent to the first author’s complete distance. This enables us to consolidate the basic theory of what might be called operator Gromov-Hausdorff convergence. In particular we establish a completeness theorem and deduce continuity in qua...

متن کامل

A pr 2 00 5 ON GROMOV - HAUSDORFF CONVERGENCE FOR OPERATOR METRIC SPACES

We introduce an analogue for Lip-normed operator systems of the second author’s order-unit quantum Gromov-Hausdorff distance and prove that it is equal to the first author’s complete distance. This enables us to consolidate the basic theory of what might be called operator Gromov-Hausdorff convergence. In particular we establish a completeness theorem and deduce continuity in quantum tori, Bere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008